Wow! signal

In a previous blog I discussed the Breakthrough Initiatives and their Breakthrough Listen Candidate 1. This Extraterrestrial signal from the Proxima Centauri region was not the first though. Earlier there was the Wow! signal.
Below are some details I found on Wikipedia:

The Wow! signal was a strong narrowband radio signal detected on August 15, 1977, by the Ohio State University’s Big Ear radio telescope in the United States, then used to support the search for extraterrestrial intelligence (SETI).
The signal appeared to come from the direction of the constellation Sagittarius and bore the expected hallmarks of extraterrestrial origin. Astronomer Jerry R. Ehman discovered the anomaly a few days later while reviewing the recorded data. He was so impressed by the result that he circled on the computer printout the reading of the signal’s intensity, “6EQUJ5“, and wrote the comment “Wow!” beside it, leading to the event’s widely used name.

Wow! signal represented as “6EQUJ5”

Astronomer Jerry R. Ehman discovered the anomaly a few days later while reviewing the recorded data. He was so impressed by the result that he circled on the computer printout the reading of the signal’s intensity, “6EQUJ5”, and wrote the comment “Wow!” beside it, leading to the event’s widely used name.
The entire signal sequence lasted for the full 72-second window during which Big Ear was able to observe it, but has not been detected since, despite several subsequent attempts by Ehman and others. Many hypotheses have been advanced on the origin of the emission, including natural and human-made sources, but none of them adequately explain the signal.

Although the Wow! signal had no detectable modulation—a technique used to transmit information over radio waves—it remains, as of 2021, the strongest candidate for an alien radio transmission ever detected. As of December 2021, BLC1 dropped off the list, as members of the Breakthrough Listen team confirmed their initial suspicions, determining with “virtual certainty” that BLC1 is caused by terrestrial interference. They have submitted the new results for peer review.

Background of the Wow! signal

In a 1959 paper, Cornell University physicists Philip Morrison and Giuseppe Cocconi had speculated that any extraterrestrial civilization attempting to communicate via radio signals might do so using a frequency of 1420 megahertz (21-centimeter spectral line), which is naturally emitted by hydrogen, the most common element in the universe and therefore likely familiar to all technologically advanced civilizations.

In 1973, after completing an extensive survey of extragalactic radio sources, Ohio State University assigned the now-defunct Ohio State University Radio Observatory (nicknamed “Big Ear“) to the scientific search for extraterrestrial intelligence (SETI), in the longest-running program of this kind in history. The radio telescope was located near the Perkins Observatory on the campus of Ohio Wesleyan University in Delaware, Ohio.

Ohio State University Radio Observatory (nicknamed “Big Ear”)

By 1977, Ehman was working at the SETI project as a volunteer; his job involved analyzing by hand large amounts of data processed by an IBM 1130 computer and recorded on line printer paper. While perusing data collected on August 15, he spotted a series of values of signal intensity and frequency that left him and his colleagues astonished. The event was later documented in technical detail by the observatory’s director.

Measurement of 6EQUJ5

The string 6EQUJ5, commonly misinterpreted as a message encoded in the radio signal, represents in fact the signal’s intensity variation over time, expressed in the particular measuring system adopted for the experiment. The signal itself appeared to be an unmodulated continuous wave, although any modulation with a period of less than 10 seconds or longer than 72 seconds would not have been detectable.

The signal intensity was measured as signal-to-noise ratio, with the noise (or baseline) averaged over the previous few minutes. The signal was sampled for 10 seconds and then processed by the computer, which took 2 seconds. Therefore, every 12 seconds the result for each frequency channel was output on the printout as a single alphanumeric character, representing the 10-second average intensity, minus the baseline, expressed as a dimensionless multiple of the signal’s standard deviation.

In this particular intensity scale, a space character denoted an intensity between 0 and 1, that is between baseline and one standard deviation above it. The numbers 1 to 9 denoted the correspondingly numbered intensities (from 1 to 9); intensities of 10 and above were indicated by a letter: “A” corresponded to intensities between 10 and 11, “B” to 11 to 12, and so on. The Wow! signal’s highest measured value was “U” (an intensity between 30 and 31), that is thirty standard deviations above background noise.

John Kraus, the director of the observatory, gave a value of 1420.3556 MHz in a 1994 summary written for Carl Sagan. However, Ehman in 1998 gave a value of 1420.4556±0.005 MHz1. This is (50±5 kHz) above the hydrogen line value (with no red- or blue-shift due to Doppler effect) of 1420.4058 MHz.
If due to blue-shift, it would correspond to the source moving about 10 km/s towards Earth.

The Wow! signal was a narrowband emission: its bandwidth was less than 10 kHz. The Big Ear telescope was equipped with a receiver capable of measuring fifty 10 kHz-wide channels. The output from each channel was represented in the computer printout as a column of alphanumeric intensity values. The Wow! signal is essentially confined to one column.

At the time of the observation, the Big Ear radio telescope was only adjustable for altitude (or height above the horizon), and relied on the rotation of the Earth to scan across the sky. Given the speed of Earth’s rotation and the spatial width of the telescope’s observation window, the Big Ear could observe any given point for just 72 seconds.
A continuous extraterrestrial signal, therefore, would be expected to register for exactly 72 seconds, and the recorded intensity of such signal would display a gradual increase for the first 36 seconds—peaking at the center of the observation window—and then a gradual decrease as the telescope moved away from it. All these characteristics are present in the Wow! signal.

Where did the Wow! signal come from?

The precise location in the sky where the signal apparently originated is uncertain due to the design of the Big Ear telescope, which featured two feed horns, each receiving a beam from slightly different directions, while following Earth’s rotation.
The Wow! signal was detected in one beam but not in the other, and the data was processed in such a way that it is impossible to determine which of the two horns received the signal. There are, therefore, two possible values for the location of the signal.

Wow! signal comes from these stars

The region of the sky in question lies northwest of the globular cluster M55, in the constellation Sagittarius, roughly 2.5 degrees south of the fifth-magnitude star group Chi Sagittarii. The closest easily visible star is Tau Sagittarii.

Hypotheses on the signal’s origin

A number of hypotheses have been advanced as to the source and nature of the Wow! signal. None of them have achieved widespread acceptance. Interstellar scintillation of a weaker continuous signal—similar in effect to atmospheric twinkling—could be an explanation, but that would not exclude the possibility of the signal being artificial in origin.
Other hypotheses include a rotating lighthouse-like source, a signal sweeping in frequency, or a one-time burst.

Ehman has said: “We should have seen it again when we looked for it 50 times. Something suggests it was an Earth-sourced signal that simply got reflected off a piece of space debris.” He later somewhat recanted his skepticism, after further research showed the unrealistic requirements that a space-borne reflector would need to have to produce the observed signal. The signal’s frequency of 1420 MHz is also part of a protected spectrum: a frequency range reserved for astronomical research in which terrestrial transmissions are forbidden, although a 2010 study documented several instances of terrestrial sources either interfering from adjacent frequency bands or illegally transmitting within the spectrum. In a 1997 paper, Ehman resists “drawing vast conclusions from half-vast data“—acknowledging the possibility that the source may have been military or otherwise a product of Earth-bound humans.

METI president Douglas Vakoch told Die Welt that any putative SETI signal detections must be replicated for confirmation, and the lack of such replication for the Wow! signal means it has little credibility.

1 An explanation of the difference between Ehman’s value and Kraus’s can be found in Ehman’s paper. An oscillator, which became the first local oscillator, was ordered for the frequency of 1450.4056 MHz. However, the university’s purchasing department made a typographical error in the order and wrote 1450.5056 MHz (i.e., 0.1 MHz higher than desired). The software used in the experiment was then written to adjust for this error.
When Ehman computed the frequency of the Wow! signal, he took this error into account.

Geef een antwoord

Het e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *